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Ramp-induced wave-number selection for traveling waves
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The problem of wave-number selection by a ramp, i.e., a region smoothly matching sub- and supercrit-
ical domains, is considered within the framework of the cubic and quintic Ginzburg-Landau (GL) equa-
tions with a sign-changing overcriticality parameter. A local frequency is also allowed to be a smooth
function of the spatial coordinate. For the cubic model, a unique value of the selected wave number is
found by means of an asymptotic procedure valid when the imaginary parts of coefficients in the GL
equation are small, while the group velocity is arbitrary. Under certain conditions, the wave number
may lie outside the stability band, which is expected to give rise to a dynamical chaos. In the quintic
model, which describes a system with the inverted bifurcation, the selection scenario is much simpler: A
front separating a traveling wave and the trivial state is expected to be pinned at the point of the ramp
where its velocity, regarded as a function of the local overcriticality, vanishes. Eventually, the wave-
number selection is performed by the pinned front. Experimentally, the selection may be realized in the
traveling-wave convection, or in a self-oscillatory chemical system.

PACS number(s): 47.27.Te, 47.35.+1i, 52.35.Mw, 03.40.Kf

As is well known [1,2], the Eckhaus stability criterion
singles out a whole band of wave numbers of stable pat-
terns, which give rise to the famous wave-number selec-
tion problem. A solution to this problem was put for-
ward in Ref. [3]: In a spatially inhomogeneous system
with a so-called ramp of the overcriticality parameter ¢,
when €(x) is negative at x <0 and positive at x >0, the
system unambiguously selects the center of the Eckhaus
stability band [4]. The objective of the present work is to
consider a similar wave-number selection problem for
waves produced by the oscillatory instability in a system
with the ramped overcriticality. It should be feasible to
realize this situation experimentally in the binary-fluid
convection, which is well known to have the traveling-
wave character [5]. To render the wave system effectively
one dimensional, one can use a narrow channel, giving a
small gradient along the channel to the temperature
difference driving the convection. The important fact is
that the traveling-wave convection experiments in the
narrow channel can be conducted under very well-
controlled conditions, which makes it possible to observe
really subtle dynamical effects [6-8]. Another example of
a well-controlled nonequilibrium system in which it
seems possible to create the necessary gradient of the
overcriticality is furnished by self-oscillatory chemical re-
actions in a gel host medium, where, in particular, a
steady Turing-like pattern has been recently observed [9].

The analysis of the selection problem will be started in
terms of the cubic Ginzburg-Landau (GL) equation,
which is a commonly known phenomenological model of
nonequilibrium systems with the oscillatory instability.
However, the real traveling-wave convection is bistable,
its simplest model being the quintic GL equation [8].
The selection problem for the latter model is briefly con-
sidered at the end of the present work. Although the
quintic GL equation is, generally speaking, more compli-
cated than the cubic one, a solution of this problem
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proves to be much simpler for the quintic equation. Any-
way, the wave number is demonstrated to be always
selected uniquely.

The cubic GL equation for the complex order parame-
ter u (x,t) is taken in the form

u,+cu, =e(x)u —ixy(x)u —(1+ia)ul®u +(1+iB)u

(1)

where c¢ is the group velocity, a and 3 are coefficients of
the nonlinear and spatial dispersion, and the local fre-
quency Y (the imaginary part of the overcriticality €) is
allowed to be a smooth function of x together with the
ramped €(x). One can take, for instance,

e€(x)=tanh(x /I) (2)

with />>1. In what follows, it will be adopted, for con-
venience, that €(+ « )=1 and y(+ o )=0.

Traveling-wave solutions to Eq. (1) are looked for in
the form

u(x,t)=a(x)explid(x)—iwt] . (3)

The amplitude a(x) and phase ¢(x) are determined by
the real equations ensuing from Eq. (1):

e(x)a —ca'—a*+a" —ak?*—Bak’'—2Ba’'k =0, (4a)
—wa’+catk=a*'+2aa'k —y(x)a*—aa*
+Baa’ —Ba?k? (4b)

where k (x)=d¢/dx is the local wave number, and the
prime stands for d/dx. To attack the wave-number
selection problem analytically, it is natural to develop a
perturbative analysis, assuming the dispersion coefficients
a and f3 small. Note that, for the real traveling-wave
convection [6-8], B is always small, while « is not (typi-
cally, a~5). However, I have to adopt the assumption
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|a| << 1 to be able to solve the problem analytically. The
results to be obtained below can give at least a qualitative
understanding of what may happen at nonsmall a. A de-
tailed analysis of the situation with a=1 should rely
upon numerical simulations of Eq. (1), which are now un-
derway [10].

If the dispersion parameters are assumed small, it is
natural to assume as well that also the inhomogeneous
frequency x(x) is small. This assumption will be adopted
below; however, it will be demonstrated then that
x¥(x)70 gives rise to nontrivial wave-number selection
even in the absence of the dispersion. As for the group
velocity ¢, I will consider the general situation when it is
not assumed small. It will be shown that the result for
¢ =0 can be directly obtained from the general one by
taking the limit ¢ —0.

According to what was said above, all the unknown
quantities a(x), k(x), and o should be expanded in
powers of «, B, and x(x). At the zeroth order of the ex-
pansion, Eq. (4a) simplifies to

e(x)a,—cay—ap+ay =0 (5

(hereafter, the subscripts refer to the order of the expan-
sion). Equation (5) should be supplemented by the obvi-
ous boundary conditions (BC),

ag(—0)=0, ayp(+ow)=1 (6)

[recall €(+ o0 )=1]. At the same order, Eq. (4b) takes the
form

d

E(a%ko)—c(aéko)=—woa% . (7
Setting x = + o in Eq. (7) yields the relation
C()0=CKO N (8)

where K =k (x =+ ) is the asymptotic wave number
sought for. Integration of Eq. (7) yields, with regard to
J
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ad(x)ko(x)=—cKoe™ [* e *ad(x")dx’ . )
If ¢ is negative, the integral in Eq. (9) diverges at large x,
and in the limit x —+ o Eq. (9) degenerates into the
trivial identity K =K. This implies that there is no
wave-number selection at negative c (i.e., if the group ve-
locity points to the subcritical region). The situation is
different if ¢ is positive. In this case, the integral con-
verges, and at large x Eq. (9) takes the asymptotic form

ad(+ ®)K,=—cKje fjwe“"a(z)(x’)dx' . (10)

Since the right-hand side of Eq. (10) diverges at x — + oo,
the only way to obtain a meaningful result is to set
K,=0. Thus, a positive finite ¢, as well as ¢ =0 [3], select
K,=0. Then it follows from Egs. (7) and (8) that
ko(x)=0.

In the next approximation, Eq. (4b) takes the form

%(a%kl )—c(adk,)=—wa}+x(x)al+aal—PBayay .

(11)
At x — + 0, Eq. (11) yields [recall y(+ o )=0]
o,=cK,+a. (12)

According to what was said above, we consider only
¢ >0. In this case, straightforward integration of Eq. (11)
yields, at x — + o [cf. Eq. (9)],

K, =e™ f+°° e [ —(cK,+a)ad(x")+x(x")ad(x")

+aad(x')—Bag(x"ay (x')]dx" .
(13)

Since c is positive, the integral in Eq. (13) converges [11],
while the preintegral factor, exp(cx), diverges at
x — =+ o. To compensate the divergence, one has to nul-
lify the integral. This immediately yields

K,=—a/c+(1/c) [fjw e *al(x)dx ]_l f_+weAc"[)((x)a%(x)-*'aag(x)—Ba{)'(x)ao(x)]dx . (14)

Given a solution of the boundary problem (5) and (6), Eq.
(14) solves the wave-number selection problem for the
traveling waves.

Although only strictly positive ¢ were considered, Eq.
(14) admits a limit transition to the case ¢ =0. Indeed, a
straightforward analysis demonstrates that, in this limit,
the divergent multipliers ¢ ~! are canceled by the diver-
gence of the integrals involved, and the final result for
c=0is

K= [77 (xxadx)—aad(x)[1-a(x)]

+Blay(x))}dx (15)

where the last term has been integrated by parts. On the
other hand, Eq. (15) can be obtained by direct integration
of Eq. (11) if one sets in it ¢ =0.

r

It is noteworthy that, if a==0 (no dispersion), but
x(x)#0, Eq. (14) still gives a nontrivial result,

© -1
K,=(1/c) [f+ e~ %al(x)dx

x [ 77 e~y (xad(x)dx . (16)

This result is, actually, exact for the dispersionless sys-
tem. Indeed, setting a ==0, one notes that Eq. (4a) ex-
actly coincides with Eq. (5), while Eq. (4b) coincides with
Eq. (11). Thus, Eq. (16), obtained by integration of Eq.
(11) with a=B=0, yields the exact expression for the
selected wave number.

If, in addition to assuming a, f3, and x(x) small, one
also assumes that the coefficients €(x) and y(x) vary at a
large scale I >>1 [see, e.g., Eq. (2)], an approximate solu-
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tion to Eq. (5) satisfying the BC (6) can be taken in the
obvious form

ay=0, x <0; gy=Velx), x>0. (17

In this approximation, one may neglect the last term of
the integrand in the numerator of Eq. (14), and then Eq.
(14) takes the fully explicit form

o —1
Ky=—a/c+(1/c) | [ 77 e~ elx)dx

><f0+°°e*CX[X(x)e(xHaez(x)]. (18)

Equation (15), which pertains to the limiting case ¢ =0,
can also be simplified under the condition / >>1. Insert-
ing Eq. (17) and neglecting the last term in Eq. (15), one
readily finds

K, = f0+w{)((x)e(x)-—ae(x)[l——e(x)]}dx. (19)

If, in particular, e(x) is given by Eq. (2) and x(x)=0,
K,=—(m—2)al. Since the characteristic scale / of the
function e(x) is large, a similar estimate is true in the
general case:

K~—al (20)

[it is evident how to modify this estimate if the contribu-
tion from y(x) is taken into account]. A significant
feature of the expression (20) is that the smallness of «
can be in part compensated by the large multiplier /. Ac-
tually, the same estimate is valid when c is finite but
much smaller than 1/1.

The analysis developed above assumed tacitly that the
selected wave number complied with the stability condi-
tions for traveling waves governed by the Ginzburg-
Landau equation (1) with constant coefficients (e=1,
¥=0). The necessary stability conditions are [12,13]
1+aB >0, and

K*<(1+aB)3+2a*+aB) ! (1)

(these necessary conditions become sufficient if, in addi-
tion, K2<1 [13]). It follows from Eq. (20) that if c is
sufficiently small while / is sufficiently large, the wave
number given by Eq. (19) may lie outside the stability
band (21). Of course, the above analysis preassumed that
K was small enough, but it seems quite plausible that the
selected wave number may indeed get outside the stabili-
ty region.

If this happens, it is natural to expect that the ramp
generates a wave “‘turbulence” (dynamical chaos). Very
preliminary results of numerical simulations of Eq. (1)
demonstrate that the chaos does take place [10]. The on-
set of chaos induced by the ramp would not be very
surprising because it is known that a spatial inhomo-
geneity in the Ginzburg-Landau equation is apt to gen-
erate a dynamical chaos [14,15].
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Another nontrivial situation may take place (at least, in
the particular case ¢ =0) when a supercritical “island” is
created in the subcritical bulk (as, e.g., in the annular sys-
tem which is a good tool for the experiments with the
traveling-wave convection [8]). In this case, a sufficiently
long supercritical island is expected to generate waves
traveling in the opposite directions. Thus, one should
have a source of waves on the island. The corresponding
quasistationary [i.e., having the general form of Eq. (3)]
stable solution to Eq. (1) with the constant coefficients
has been found in the geometric-optics (eikonal) approxi-
mation in Refs. [16] and [13]. If, however, the two
ramps matching the island with the supercritical bulk
select unequal wave numbers, the source must move with
a velocity proportional to their difference. Since the is-
land, although assumed long, has a finite size, the situa-
tion cannot be quasistationary even if the selected wave
numbers belong to the stability band.

In conclusion, let us discuss the same problem for sys-
tems with the inverted bifurcation, when a traveling wave
can be triggered by a finite disturbance in the subcritical
region. As was mentioned above, this is a generic case
for the traveling-wave convection [5-8]. The simplest
model of the inverted bifurcation is based on the quintic
Ginzburg-Landau equation. As was demonstrated in
Ref. [17], this bistable model, unlike the monostable cu-
bic one, admits a traveling-front solution. The front is a
boundary between the trivial state and a traveling wave.
The front’s velocity is a uniquely determined function of
all the parameters of the model, and there is a certain
negative value €, of the overcriticality at which the veloc-
ity vanishes; €, is a function of the other parameters. In
the system with the ramped overcriticality €(x), the front
should come to the point x, at which e(x)=¢, and be
stuck there, provided that the scale / at which e(x) varies
is much larger than a width of the front. It is natural to
expect that the pinned state of the front at x =x, is
stable. Next, it is known that the front uniquely selects
the wave number and the frequency of the traveling wave
[17]. The wave beyond the pinned front will then slowly
evolve in x, adjusting itself to the slowly varying overcri-
ticality. The asymptotic wave number at x = + o will be
different from that immediately selected by the front;
however, it can be easily found since in a stationary state
the frequency selected by the front should be spatially
homogeneous. This scenario of the frequency and wave-
number selection for the bistable systems seems much
simpler than that in the monostable model based on Eq.

(1).
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